Search results

1 – 4 of 4
Article
Publication date: 8 August 2016

Cheng-De Zheng and Zhanshan Wang

The purpose of this paper is to develop a methodology for the stochastically asymptotic synchronization problem for a class of neutral-type chaotic neural networks with both…

Abstract

Purpose

The purpose of this paper is to develop a methodology for the stochastically asymptotic synchronization problem for a class of neutral-type chaotic neural networks with both leakage delay and Markovian jumping parameters under impulsive perturbations.

Design/methodology/approach

The authors perform drive-response concept and time-delay feedback control techniques to investigate a class of neutral-type chaotic neural networks with both leakage delay and Markovian jumping parameters under impulsive perturbations. New sufficient criterion is established without strict conditions imposed on the activation functions.

Findings

It turns out that the approach results in new sufficient criterion easy to be verified but without the usual assumption of the differentiability and monotonicity of the activation functions. Two examples show the effectiveness of the obtained results.

Originality/value

The novelty of the proposed approach lies in removing the usual assumption of the differentiability and monotonicity of the activation functions, and the use of the Lyapunov functional method, Jensen integral inequality, a novel Gu’s lemma, reciprocal convex and linear convex combination technique for the stochastically asymptotic synchronization problem for a class of neutral-type chaotic neural networks with both leakage delay and Markovian jumping parameters under impulsive perturbations.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 9 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 12 March 2018

Cheng-De Zheng

The purpose of this paper is to develop a methodology for the stochastically asymptotic stability of fuzzy Markovian jumping neural networks with time-varying delay and…

Abstract

Purpose

The purpose of this paper is to develop a methodology for the stochastically asymptotic stability of fuzzy Markovian jumping neural networks with time-varying delay and continuously distributed delay in mean square.

Design/methodology/approach

The authors perform Briat Lemma, multiple integral approach and linear convex combination technique to investigate a class of fuzzy Markovian jumping neural networks with time-varying delay and continuously distributed delay. New sufficient criterion is established by linear matrix inequalities conditions.

Findings

It turns out that the obtained methods are easy to be verified and result in less conservative conditions than the existing literature. Two examples show the effectiveness of the proposed results.

Originality/value

The novelty of the proposed approach lies in establishing a new Wirtinger-based integral inequality and the use of the Lyapunov functional method, Briat Lemma, multiple integral approach and linear convex combination technique for stochastically asymptotic stability of fuzzy Markovian jumping neural networks with time-varying delay and continuously distributed delay in mean square.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 11 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 16 January 2019

Cheng-De Zheng, Ye Liu and Yan Xiao

The purpose of this paper is to develop a method for the existence, uniqueness and globally robust stability of the equilibrium point for Cohen–Grossberg neural networks with…

Abstract

Purpose

The purpose of this paper is to develop a method for the existence, uniqueness and globally robust stability of the equilibrium point for Cohen–Grossberg neural networks with time-varying delays, continuous distributed delays and a kind of discontinuous activation functions.

Design/methodology/approach

Based on the Leray–Schauder alternative theorem and chain rule, by using a novel integral inequality dealing with monotone non-decreasing function, the authors obtain a delay-dependent sufficient condition with less conservativeness for robust stability of considered neural networks.

Findings

It turns out that the authors’ delay-dependent sufficient condition can be formed in terms of linear matrix inequalities conditions. Two examples show the effectiveness of the obtained results.

Originality/value

The novelty of the proposed approach lies in dealing with a new kind of discontinuous activation functions by using the Leray–Schauder alternative theorem, chain rule and a novel integral inequality on monotone non-decreasing function.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 12 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 31 May 2013

Cheng‐De Zheng, Ri‐Ming Sun and Zhanshan Wang

The purpose of this paper is to develop a methodology for the existence and global exponential stability of the unique equilibrium point of a class of impulsive Cohen‐Grossberg…

Abstract

Purpose

The purpose of this paper is to develop a methodology for the existence and global exponential stability of the unique equilibrium point of a class of impulsive Cohen‐Grossberg neural networks.

Design/methodology/approach

The authors perform M‐matrix theory and homeomorphism mapping principle to investigate a class of impulsive Cohen‐Grossberg networks with time‐varying delays and distributed delays. The approach builds on new sufficient criterion without strict conditions imposed on self‐regulation functions.

Findings

The authors' approach results in new sufficient criteria easy to verify but without the usual assumption that the activation functions are bounded and the time‐varying delays are differentiable. An example shows the effectiveness and superiority of the obtained results over some previously known results.

Originality/value

The novelty of the proposed approach lies in removing the usual assumption that the activation functions are bounded and the time‐varying delays are differentiable, and the use of M‐matrix theory and homeomorphism mapping principle for the existence and global exponential stability of the unique equilibrium point of a class of impulsive Cohen‐Grossberg neural networks.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 6 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 4 of 4